

IPPW2019 - Trajectories for Ice Giant Entry Probes

Michael Khan

07/07/2019

ESA UNCLASSIFIED - For Official Use

The Transfer Drives it all

- The mission always originates from the Earth
- Its transfer to the target ice giant is driven by a plethora of constraints and requirements
 - Launch window
 - Maximum transfer duration
 - Jupiter Gravity Assist radiation loads (count on a JGA)
 - Absence of superior conjunction prior to or after entry
 - Character of mother ship (carrier vs. orbiter)
 - Joint missions possible (single launch, separated by JGA, entry probes at Uranus and Neptune)
- For a given launch window, the arrival conditions are near-unchangeable
 - Another factor is the low orbit speed of the ice giants.
 - Months or years later, the target will still be almost at the same location in the solar system
- Entry probe mission duration
 - ~ 10 to 90 minutes

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 2

The Entry Diagram – a "diagram of everything"

- The "diagram of (almost) everything" shows, as function of local solar time and latitude:
 - the limits of Sun and Earth visibility
 - the possible entry points for any entry flight path angle
 - The direction of flight at the entry interface point
- Given here is an example for Neptune
 - Every transfer scenario yields its own, distinct diagram
 - The relative entry velocity as function of entry latitude and FPA is directly linked to the entry diagram
 - Due to the ice giants' fast rotation, the difference between prograde and retrograde entry is massive
 - Entry flight path angle and velocity drive peak heat flux, peak deceleration and total heat load, as is shown in a later lecture
- This diagram contributes to selection of entry conditions
 - o Consistency with TPS, mother ship, data relay must be studied

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 3

ESA UNCLASSIFIED - For Official Use

Uranus is weirder than Neptune

- Shown here is a sample entry diagram for a specific case
- Tilt of the rotation axis and retrograde rotation
- Limited range of reachable entry latitudes
 - Atmospheric rotation deflects the entry probe sideways, carrying it away from the **mother ship's path**

ESA UNCLASSIFIED - For Official Use

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 4

Approach Operations

- The mother ship deploys the entry probe on the entry trajectory
- Typically, the mother ship is still needed afterwards
 - Even if it is just a carrier with no further mission, it will likely be needed for data relay of the entry probe data
 - If the mother ship is an orbiter that will embark on a tour of the target ice giant, it will likely also perform probe data relay plus an orbit insertion manoeuvre during the entry probe's atmospheric phase
 - In the future, added microsatellites might be used to enhance data relay performance
 - In all cases an orbiter deflection manoeuvre will be needed to raise closest approach of the mother ship's trajectory to a safe altitude
 - The mother ship might try to image the departing probe
 - A second, phasing manoeuvre might also be needed for optimal timing of closest approach
 - The mother ship then prepares for data relay (plus insertion manoeuvre?) and enters a quiet phase
 - Foresee sufficient time between probe separation and entry (5-30 days), allowing backup opportunities for all manoeuvres and critical operations

ESA UNCLASSIFIED - For Official Use

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 5

Approach Navigation

- Months before entry and tens of million km from the target body, the pretargeting navigation campaign will start
 - The campaign will ramp up as the day of separation draws close
 - Measurement types:
 - Radiometric (Doppler and Delta-DOR)
 - Delta-DOR loses precision at range of 19 AU (Uranus) or 30 AU (Neptune)
 - Optical Navigation, likely indispensable for accurate probe targeting (and tour?)

ESA UNCLASSIFIED - For Official Use

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 6

· = ■ ► = = + ■ = ≔ = 1 ■ ■ = = = ≈ = ■ ■ ■ ■ = ≈ = ∞

Examples

Example 1: Neptune Entry probe and mother ship

Example 2: Uranus Entry probe and mother ship

Animations courtesy of David de la Torre Sangrá

ESA UNCLASSIFIED - For Official Use

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 7

· = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Probe-Mother Ship Comms: OAA

- Even with a near-hemispherical antenna characteristics on probe, OAA cannot exceed ~80 deg or comms will fail
- Excessive range: reduced bit rate, valuable data cannot be transmitted
- No data, no science!

ESA UNCLASSIFIED - For Official Use

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 8

OAA

Thank you for your attention

ESA UNCLASSIFIED - For Official Use

Michael Khan | ESA-IPPW2019_MA01 | ESOC | 07/07/2019 | Slide 9

+

| = ■ ► = = + ■ + ■ ≔ = = ■ ■ = = = = ■ ■ ■ ■ = = ₩ =