b UNIVERSITÄT BERN

Mass Spectrometric Investigations of the Atmospheres of Giant Planets

Peter Wurz Physics Institute, University of Bern Sidlerstrasse 5, 3012 Bern, Switzerland

Science Objectives for Giant Planet's Atmospheres

UNIVERSITÄT Bern

Scientific Objective ¹	Measurement Objective	Measurement Requirements
Constrain our models and understanding of Ice Giant's	Determine fractional abundance of helium relative to H_2	H ₂ /He ratio to an accuracy of 1%
formation and subsequent evolution in situ measurement of elemental constituents and isotopic	Determine atmospheric abundance ratios of C, H, O, N, and noble gases	C/H, N/H, O/H to a precision of $\pm 10\%$ or better
abundances for comparison with elemental compositions observed in		Ne/He, Ar/He, Kr/He, Xe/He to a precision of $\pm 30\%$ or better
the Sun, meteorites, and other planetary atmospheres	Determine isotopic ratios of C, H, O, N, and noble gases	$^{13}C/^{12}C$, $^{18}O/^{16}O$ to ±1% or better
		D/H, $^{15}N/^{14}N$ in major molecular species to $\pm 1\%$ to 5%
		Isotopic ratios of He, Ne, Ar, Kr, Xe to $\pm 5\%$ to $\pm 10\%$ or better
Determine the strength of vertical mixing in Ice Giant's atmosphere	Determine the vertical abundance profiles of CH_4 , CO, PH_3 , H_2S , NH_3 , and others	Measure abundances with uncertainty of a factor of 2 or less
Constrain models of cloud formation and structure	Determine abundances of condensable species below cloud base	e.g., H_2O , H_2S , and NH_3 to a factor of 2 or better

O. Mousis, et al., *Scientific rationale for Uranus and Neptune in situ explorations*, Plan. Sp. Sc. 155 (2018), 12-40

Science Objectives for Giant Planet's Atmospheres

b UNIVERSITÄT BERN

100 Neptune	II	
		-

Ratios to protosolar values in the upper tropospheres of Jupiter, Saturn, Uranus and Neptune.

Table 1

Elemental abundances in Jupiter, Saturn, Uranus and Neptune, as derived from upper tropospheric composition.

Elements	Jupiter	Saturn	Uranus	Neptune
He/H ^a	$(7.85 \pm 0.16) imes 10^{-2}$	$(6.75 \pm 1.25) imes 10^{-2}$	$(8.88 \pm 2.00) imes 10^{-2}$	$(8.96 \pm 1.46) imes 10^{-2}$
Ne/H ^b	$(1.240 \pm 0.014) imes 10^{-5}$	-	-	-
Ar/H ^b	$(9.10 \pm 1.80) imes 10^{-6}$	-	-	-
Kr/H ^b	$(4.65 \pm 0.85) imes 10^{-9}$	-	-	-
Xe/H ^b	$(4.45 \pm 0.85) imes 10^{-10}$	-	-	-
C/H ^c	$(1.19 \pm 0.29) imes 10^{-3}$	$(2.65 \pm 0.10) imes 10^{-3}$	$(0.6-3.2) imes 10^{-2}$	$(0.6 ext{-} 3.2) imes 10^{-2}$
N/H ^d	$(3.32 \pm 1.27) imes 10^{-4}$	$(0.50-2.85) imes 10^{-4}$	-	-
O/H ^e	$(2.45 \pm 0.80) imes 10^{-4}$	-	-	-
S/H ^f	$(4.45 \pm 1.05) imes 10^{-5}$	-	-	-
P/H ^g	$(1.08 \pm 0.06) imes 10^{-6}$	$(3.64 \pm 0.24) \times 10^{-6}$	-	-

^a von Zahn et al. (1998) and Niemann et al. (1998) for Jupiter, Conrath and Gautier (2000) and Atreya et al. (2016) for Saturn, Conrath et al. (1987) for Uranus and Burgdorf et al. (2003) for Neptune. We only consider the higher value of the uncertainty on He in the case of Neptune.

^b Mahaffy et al. (2000) for Jupiter.

^c Wong et al. (2004) for Jupiter, Fletcher et al. (2009a) for Saturn, Lindal et al. (1987), Baines et al. (1995), Karkoschka and Tomasko (2009), and Sromovsky et al. (2014) for Uranus, Lindal et al. (1990), Baines et al. (1995), and Karkoschka (2011) for Neptune.

^d Wong et al. (2004) for Jupiter, Fletcher et al. (2011) for Saturn (our N/H range is derived from the observed range of 90–500 ppm of NH₃).

^e Wong et al. (2004) for Jupiter (probably a lower limit, not representative of the bulk O/H). de Graauw et al. (1997) has detected H₂O at 5 μm with ISO in Saturn, but the measurement at

1–3 bars is not representative of the bulk O/H. f

^f Wong et al. (2004) for Jupiter.

^g Fletcher et al. (2009b) for Jupiter and Saturn.

O. Mousis, et al., *Scientific rationale for Uranus and Neptune in situ explorations*, Plan. Sp. Sc. 155 (2018), 12-40

Top-level Requirements

- Mass range
 - ≻ 1 300 u
- Sufficient mass resolution
 - > m / ∆m ≈ 500
- Sufficient sensitivity
 - 10 decades dynamic range, plus isotopes
 - Measurement time 10 90 minutes (descent time)
- Limit complexity
 - Accommodation in the atmospheric probe
- Limit instrument resources
 - Power, volume, mass

NIVERSITÄT

Galileo Probe Mass Spectrometer Experiment

Fig. 1. Schematic of the gas inlet system and connection to the mass spectrometer sensor. Two parallel gas inlet/outlet systems are employed to provide gas samples to the direct leaks, L1 and L2, and to the two sample enrichment systems centered around C1 and C2.

H.B. Niemann, D.N. Harpold, S.K. Atreya, G.R. Cargnan, D.M. Hunten, T.C. Owen, Galileo Probe Mass spectrometer Experiment, Sp. Sci. Rev. 60 (1992) 111–142.

Fig. 2. Mass spectra showing enrichment obtained when gas processing is used to remove the major constituent H_2 from a 90% H_2 and 10% He mixture containing constituents each of 150 ppmv. (a) Rare gas enrichment. Note the substantial enrichment of Xe obtained. Expected Xe ratios are marginably measurable by direct analysis. (b) Hydrocarbon enrichment. There is a substantial enrichment of the C_3-C_4 hydrocarbons with a somewhat less enrichment for methane. For illustration the spectra were recorded analog with laboratory recording equipment.

The Gas Chromatograph Mass **Spectrometer for the Huygens Probe**

Figure 3. Schematic of the Gas Chromatograph Mass Spectrometer. Details of the Aerosol Collect Figure 6. An ion source showing the electron and ion focusi Pyrolyser are shown in an accompanying paper in this volume.

H.B. Niemann, et al., The Gas Chromatograph Mass Spectrometer for the Huygens Probe, Sp. Sci. Rev. 104 (2002) 553-591.

The overall height is 63 mm.

UNIVERSITÄT BERN

Figure 7. The ion source system, showing the individual ion sources and the switching lenses in the partially assembled ion source housing before installation of the getter housings and the gas inlet manifolds. The overall length is 357 mm.

NGMS / Luna-Resurs GC-MS complex

Mass: 3.5 kg Power: 19 W

176

60

245

145

Neutral Gas Mass Spectrometer Luna-Resurs / Luna-Glob

UNIVERSITÄT BERN

P. Wurz, D. Abplanalp, M. Tulej, and H. Lammer, "A Neutral Gas Mass Spectrometer for the Investigation of Lunar Volatiles," Planet. Sp. Science 74 (2012) 264-269.

Mass Resolution

- - there is separation of low-mass chemical species
- - there is a separation of peaks of different nominal mass (e.g., 325 amu versus 326 amu)
- m/∆m ≈ 10'000 (50%),
 - separation of peaks for nominally isobaric species (i.e., molecules of the same nominal mass differing in elemental composition), e.g., N₂ versus CO, both ~28 amu.
 - resolution of small (< 2500 amu) peptides of the same nominal mass differ by one amino acid (except for isomeric leucine and isoleucine)
- **m**/∆m ≈ 100'000 (50%),
 - there is a separation of peaks for nominally isobaric species, e.g. for complex carbon chemistry

P. Wurz, D. Abplanalp, M. Tulej, and H. Lammer, "A Neutral Gas Mass Spectrometer for the Investigation of Lunar Volatiles," Planet. Sp. Science 74 (2012) 264-269.

Rosetta / ROSINA / DFMS Instrument

- Covers mass range from 12 to 150 amu/e
- Mass resolution m/ Δ m > 9000 (at 50% peak height)
- Detects particle densities of 1 cm⁻³ within 20 s for one mass line
- Complete mass spectrum 20 40 min

UNIVERSITÄT RERN

Rosetta / ROSINA Double Focussing Mass Spectrometer (DFMS): Example

The four panels show the high resolution mass spectra from DFMS / ROSINA for the species Ca, K, Si and Na, which are observed together with other species from the volatile material of the coma. Red lines give Gaussian fits to the mass peaks of interest, blue lines to mass peaks that are close to the mass peak of interest, and the black lines are the sum curve.

Wurz et al., A&A 583 (2015) 1-9

IPPW 2019, Oxford

IVERSITÄT

RTOF / ROSINA on Rosetta / ESA

- RTOF design: 1996
- Mass resolution: m/∆m = 1500 ... 4500 (depending on mode)
- Mass range: 1 ... 500 amu (in principle unlimited, because TOF instrument)
- Sensitivity: 10⁻⁴... 10⁻³
 A/mbar (depending on mode)
 - Mass: 14.7 kg
 - Power: 28 W

H. Balsiger, et al., "ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis," Space Science Review 128 (2007), 745–801.

S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, and P. Wurz, A novel principle for an ion mirror design in time-of-flight mass spectrometry, Int. Jou. Mass Spectr. 251 (2006) 73–81.

S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, and P. Wurz, "A novel principle for an ion mirror design in time-of-flight mass spectrometry," Int. Jou. Mass Spectr. 251 (2006) 73-81.

Rosetta / ROSINA / RTOF

Multi-Bounce time-of-flight mass spectrometer (MASPEX) Ion Optics Simulations and Prototype

Numerical simulations of ion trajectories showing focusing of multi-bounce ion packets. $m/\Delta m(N) = NT_o/2(\Delta t+N\delta T)$

Third generation MBTOF has successfully undergone vacuum and vibration tests.

CEAMS / SwRI, H. Waite

MASPEX Performance (High-Resolution Mode)

Orbitrap Mass Sp

Figure 1. Cutaway view of the Orbitrap mass analyzer. Ions are injected into the Orbitrap at the point indicated by the red arrow. The ions are injected with a velocity perpendicular to the long axis of the Orbitrap (the *z*-axis). Injection at a point displaced from z = 0 gives the ions potential energy in the *z*-direction. Ion injection at this point on the *z*-potential is analogous to pulling back a pendulum bob and then releasing it to oscillate.

Figure 2. The experimental Orbitrap mass spectrometer. Ions are produced by the electrospray ion source at the extreme left. Ions then proceed through the source, collision quadrupole, selection quadrupole and then pass into the storage quadrupole. The storage quadrupole serves as an ion accumulator and buncher, allowing a pulsed mass analyzer such as the Orbitrap to be coupled to a continuous source like an electrospray ionization source. After accumulation and bunching in the storage quadrupole, the exit lens ('Lens 1') is pulsed low, the ion bunches traverse the ion transfer lens system and are injected into the Orbitrap mass analyzer (shown end-on).

Figure 8. ESI mass spectrum of bovine insulin. Data acquisition parameters include a data sampling rate of 5 MHz, record length was 8 million data points, and the Fourier transform was performed with no apodization function or zero-filling. The lower spectrum shows a wide range mass spectrum including the internal mass calibrant Ultramark 1621 whose oligomers are spaced by 100 mass/charge unit intervals. Lower traces in the close-ups show experimentally obtained isotopic distributions for each charge state. Upper traces in the close-ups show the theoretically expected isotopic distributions. The calculated isotope distributions were obtained from IsoPro 3.0 using Gussian peak shapes with resolution of 100 000.

A. Makarov, E. Denisov, A. Kholomeev, W. Balschun, O. Lange, K. Strupat, and S. Horning, Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer, Anal. Chem., 78 (2006) 2113-2120.

Micro-Gas Chromatography Systems (GC-GC)

Fig. 4: 2D-GC columns (3m, 25cm, and 10cm) having optimized dimensions on a U.S. quarter, with heaters and sensors to allow closed-loop temperature program on their back surfaces.

Fig. 6: The GCxGC system, with insets of the first-dimension column (bottom right) and the second-dimension column (top left).

Fig. 7: A two-dimensional contour plot of a 10-component GCxGC separation using 3m- and 0.25m-long microcolumns and a twostage thermal modulator. Alkanes are separated primarily by the first column (x-axis) and the ketones are separated primarily by the second column (y-axis). Color reflects peak height on the FID.

S. Reidy, S.-J. Kim, K. Beach, B. Block, E.T. Zellers, K. Kurabayashi, and K.D. Wise, A micro-fabricated twodimensional gas chromatography system, 2010

O. Mousis, et al., The Hera Saturn Entry Probe Mission, Plan. Sp. Sc. 130 (2016) 80-103.

Possible Implementation for an Atmospheric Probe

- Atmospheric composition complex
 - Mass spectrometer
 - Enrichment cells, e.g. Cryo trap
 - Chemical pre-separation
 - TLS, He/H
- Sufficient sensitivity and vertical resolution
 - Non-scanning instruments \rightarrow Time of Flight instrument
- Mass resolution and mass range
 - Not critical
 - Several mass analyser options
- Limit complexity
 - Simple Time of Flight instrument
 - Traps
 - Chemical pre-separation
- Limit instrument resources

UNIVERSITÄT

 $u^{\scriptscriptstyle b}$

⁶ Universität Bern

Technological Development

NGMS

LMS / Rover

RTOF / ROSINA / Rosetta

NGMS / GC-MS / Luna-Resurs 2010

gas inlet

NIM / PEP / JUICE 2016

RTOF Mass: 15 kg Mean Power 30 W

NGMS Mass: 3.5 kg Mean Power 25 W

NIM Mass: 2.5 kg Shielding: 2.8 kg Mean Power 10.3 W LMS Mass: 0.5 kg Mean Power 3.0W

IPPW 2019, Oxford

Possible Future Developments

- Increase in sensitivity
- Increased mass range
- Increase in mass resolution
- Reduced complexity
- Reduced instrument resources

UNIVERSITÄT RERN

Noble Gas Sample Concentration: Cryotrap

D UNIVERSITÄT BERN

Sample concentration

- Even though a TOF-MS is over 1000 times more sensitive than Cassini INMS (10x from ion source efficiency and 100 x from better duty cycle), calculations show that it would take longer than the probe descent time to provide the counting statistics required for the isotopes of Kr and Xe with sufficient accuracy
- The noble gas enhancement can be achieved by using a combination of a cryotrap, ion pump, and non-evaporable getter (NEG: SAES 172).
- The NEG removes all constituents except methane and the noble gases.
- The cryotrap traps the products of the NEG process, except for helium and some neon.
- The ion pump then operates to pump away the helium, which is the second highest source of gas, thus enhancing the remaining noble gases ~ 200 times.
- > Helium and neon are measured using a separate mode.

CEAMS / SwRI, H. Waite

Scientific Requirements

STEP 1: Saturn atmosphere model (J. Moses) produced as the basis for estimating the mass spectrometric measurement requirements (over 100 compounds from 0.5 to 20 bars).

STEP 2: Simulated mass spectrum generated using empirical laboratory data (line shapes) from mass spectrometer combined with NIST fragmentation and ionisation data and solar isotopic abundance information (H. Waite).

STEP 3: Spreadsheet programme developed to determine mass resolution and measurement time needed to satisfy the requirements and thus generate a realistic operational scenario (H. Waite).

3)

Results for the Measurement of Ambient Gas at 0.5 bar

Molecule	Specific isotope	Exact mass	Principal isotope	Molecular abun- dance	Mixing fraction	Min required acquisition time	Target precision	Minimum bounces required
		RMM						
		g/mol		-		sec		
H2	/H _a	2.0	P	0.895	0.895	<0,1	5%	0
H2	9H9H	3.0	2H	0.895	3.58E-5	⊲0.1	5%	4
He	"He	3.0	3He	0.1	4.64E-5	<0.1	10%	4
Ho	'He	4.0	P	0,1	0.1	<0.1	5%	ō
CH4	"C'H.	16.0	р	0.005	0.005	<0.1	1%	0
CH4	"C'H.	17.0	130	0.005	5.25E-5	17	1%	0
CH4	"C'H,'H	17.0	2H	0.005	3.72E-7	9.7	5%	21
N2	**N.	28.0	р	1.75E-6	1.74E-6	0.3	10%	3
Ne	*Ne	20.0	P	2.06E-4	1.92E-4	<0.1	10%	0
Ne	≊Ne	22.0	22No	2.06E-4	1.39E-5	0.2	10%	0
NH3	"N'H,	17.0	P	1.39E-7	1.39E-7	7.7	10%	8
As	*Ar	36.0	P	5.37E-6	1.81E-8	21.1	10%	0
Ar	=Ar	38.0	38Ar	5.37E-6	3.41E-9	111.7	10%	0
C2H6	"C,'H,	30.0	р	3.34E-8	3.27E-8	2219.5	1%	3
C2H6	"C"C'H.	31.1	13G	3.34E-8	7.38E-10	99205	196	16
Kr	**Kr	79.9	80Kr	3.04E-9	6.89E-11	13948.3	10%	3
Kr	=Kr	81.9	82Kr	3.04E-9	3.51E-10	2734.5	1035	0
Kr	^m Kr	82.9	83Kr	3.04E-9	3.49E-10	2748 1	10%	0
Kr	=Kr	83.9	P	3.04E-9	1.74E-9	552.4	10%	0
Kr	=Kr	85.9	BEKr	3.04E-9	5.25E-10	1829.	1056	0
Xe	···· Xe	127.9	128Xe	3.04E-10	2.18E-12	229818.6	10%	0
Xe		128.9	P	3.04E-10	2.21E-10	2269.6	10%	0
Xe	***Xe	129.9	130Xe	3.04E-10	4.61E-12	108669.6	10%	0
Xe	···· Xe	130.9	131Xe	3.04E-10	2.41E-11	20797.4	10%	0
Xe	""Xe	131.9	132Xe	3.04E-10	3.05E-11	16409.1	10%	D
Xe	^{the} Xe	133.9	134Xe	3.04E-10	1.19E-11	42291.8	10%6	0
Xe	⁽³⁵ Xe	135.9	136Xa	3.04E-10	1.E-11	49875.7	10%	0

Reduced Complexity

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Instrument Overview

UNIVERSITÄT BERN

DFMS, high resolution mode 1e-1 Intensity (a.u.) Rosetta / ROSINA: Active chec 1e-2 CO2++ 1e-3 **Double Focussing Mass Spect** 1e-4 21.85 21.90 21.95 22.00 22.05 22.10 1e-2 DFMS, low resolution mode, Intensity (a.u.) 1e-3 background spectrum, Dec 200 10 1e-4 20.90 21.00 21.05 21.10 20.85 20.95 H2180 1e-1 Intensity (a.u.) Intensity (a.u.) 1e-2 1e-3 0.1 1e-4 19.90 19.95 20.00 20.05 20.10 19.85 0.01 1e-1 HDO ntensity (a.u.) 1e-2 1e-3 0.001 1e-4 19.05 40 18.85 18.90 18.95 19.00 19.10 20 60 H20 Mass/cha 0.1 Intensity (a.u.) 100001 100001 B. Schläppi, K. Altwegg, H. Balsiger, M. Hässig, A. Jäckel, P. Berthelier, J. DeKeyser, H. Rème, and U. Mall, "The influenc tenuous atmospheres with in situ mass spectrometry," Jou. C 17.85 17.90 17.95 18.00 18.05 18.10

m/q

Rosetta / ROSINA: Active checkout PC4 Double Focussing Mass Spectrometer (DFMS)

Traces of hydrazine $CH_3N_2H_3$, its oxidant N_2O_4 , and products, 20 h after thruster firing

ROSINA-DFMS high resolution masss spectrum, Dec. 2006

 $P_{tota l} \sim 4 \times 10^{-11} \text{ mbar}, p_{hydrazine} \sim 1 \times 10^{-12} \text{ mbar}$

RTOF / ROSINA / Rosetta

a) single reflection mode

b) triple reflection mode

M. Hohl, P. Wurz, S. Scherer, K. Altwegg, and H. Balsiger, Int. J. Mass Spectr. 188 (1999), 189–197.

S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, and P. Wurz, Int. Jou. Mass Spectr. 251 (2006) 73–81.

RTOF mass spectrum (prototype) of the calibration compound heptacosafluorotributylamine, a compound to demonstrate mass range. Mass range is unlimited by sensor itself, data acquisition memory however limits the mass range that can be covered. In case of RTOF, the mass range is up to 1000 amu.

S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, and P. Wurz, "A novel principle for an ion mirror design in time-of-flight mass spectrometry," Int. Jou. Mass Spectr. 251 (2006) 73-81.

RTOF / ROSINA on Rosetta mission

Countrate (a.u.)

Some identified molecules and fragments in the vicinity of Rosetta S/C

UNIVERSITÄT BERN

Carbo	hydrates				PAH		N-H	Hydrazine	C-N	Oxygen	N-O
	C2	C3	C4	C5			Ν	CN		0	NO
СН	C ₂ H	C₃H	C₄H	C₅H	C₅H		NH	CHN	C_2H_2N	ОН	CNO
CH ₂	C_2H_2	C ₃ H ₂	C_4H_2	C_5H_2	C_6H_2		NH ₂	CH ₂ N	C_2H_3N	OH2	HCNO
CH3	C ₂ H	C ₃ H ₃	C_4H_3	C_5H_3	C ₆ H ₃	C ₇ H ₃	NH ₃	CH ₃ N	C_2H_4N	ODH	H ₆ CNO
CH4	C_2H_4	C_3H_4	C_4H_4	C_5H_4	C_6H_4	C_7H_4	N ₂	CH ₃ NH		¹⁸ OH ₂	NO ₂
	C_2H_5	C_3H_5	C_4H_5	C_5H_5	C_6H_5	C_7H_5		CH ₃ NH ₂	C_5H_4N	02	HNO ₂
	C_2H_6	C₃H6	C_4H_6	C_5H_6		C_7H_6		CH ₃ N ₂ H	C_5H_5N		H ₄ NO ₂
		C ₃ H ₇	C ₄ H ₇	C ₅ H ₇		C ₇ H ₇		CH ₃ N ₂ H ₂	C_5H_6N		CHNO ₂
		C₃H ₈	C_4H_8	C_5H_8		C ₇ H ₈ , Toluene	2	CH ₃ N ₂ H ₃	C ₅ H ₇ N		CH ₃ NO
			C ₄ H ₉	C₅H ₉		C_8H_{10}			C₅H ₈ N		CH ₄ NO
			C_4H_{10}	C_5H_{10}		C_9H_{12}					C₂H ₆ NC
				C_5H_{11}					$C_4H_4N_2$		H ₂ N ₂ O
				C_5H_{12}							C_2N_2O

Yellow: Possible fragments from Monomethylhydrazine and N₂O₄ Green: Solvents

Neutral Gas Mass Spectrometer Luna-Resurs / Luna-Glob

for the Investigation of Lunar Volatiles," Planet. Sp. Science (2012) in print.

Luna-Resurs Mission: GC – NGMS Complex

^{1,2} Luna-Resource-1 Lander IRD. 2017.

NGMS / Luna-Resurs GC-MS complex

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Summary

- We developed a mass spectrometer for gas analysis of atmospheres and exospheres
 - Mass range 1 1000 amu
 - > Sensitivity \approx 1 cm⁻³ in 10 s integration
 - Prototype successfully used for stratospheric research
 - Abplanalp et al. Adv. Sp. Res. 2010, Wieser et al. Adv. Sp. Res. 2010
 - Flight design for Luna-Resurs
 - Mass 3.5 kg, power 17W
- Luna-Resurs: GC-MS
 - Investigation of the volatiles contained in the soil by GC-MS analysis
 - Investigation of the lunar exosphere
 - Contamination by spacecraft
 - The Rosetta experience: Schläppi et al. JGR 2010

15. Juli 2019

Negative Ions in Titan's Upper Atmosphere

n_i (cm^{-³} bin⁻¹)

- Negative ions in the * upper atmosphere
- Typical mass groups M: 10-30, 30-50, 50-80, 80–110, and 110– 200 amu
- lons with very high ** masses
 - M < 10'000 amu
- Important for the ** formation of organicrich aerosols (tholins) eventually falling to the surface
- A. Coates et al., Geophys. Res. Lett. 34 (2007) L22103

 $u^{\scriptscriptstyle b}$

⁶ Universität Bern

D. Abplanalp, P. Wurz, et al., Adv. Space Res. 44 (2009) 870-878.

P-BACE on the MEAP platform

Background image: NASA, http://visibleearth.nasa.gov/

- Balloon provided by Esrange Space Center to test beyond line of sight flight
- Semicircular flight following the summer polar vortex
- Launched from Esrange, Sweden, on 28 June 2008
- Altitude 33 ... 38 km
- Landed in Canada, near Umingmaktok, on 3 July 2008.
- Recorded ~ 4500 mass spectra in stratosphere

Species	Measurement	Meas.	Literature	Remarks
	100 spectra	Error	value	
	(20080701/	[%]		
	18:50 - 20:40)			
³⁶ A r / ³⁸ A r	5 313	7	5 2 5	
$\frac{AI}{AI}$	28 ppm	7	32 ppm	
$^{36}\text{Ar}/^{40}\text{Ar}$	$7.2 \cdot 10^{-4}$	7	$3.38 \cdot 10^{-3}$	Discrimination of small signals (ADC-card)
²¹ Ne/Stat	0.053 ppm	21	0.049 ppm	Possible interference with H_2F^+
20 Ne/ 22 Ne	40	80	9.782	Interferences with ${}^{40}\text{Ar}^{++}$ and CO_2^{++}
⁷⁸ Kr/ ⁸⁴ Kr	0.010	50	0.006	
⁸⁰ Kr/ ⁸⁴ Kr	0.040	50	0.040	
⁸² Kr/ ⁸⁴ Kr	0.200	11	0.203	
⁸³ Kr/ ⁸⁴ Kr	0.200	11	0.202	
⁸⁶ Kr/ ⁸⁴ Kr	0.300	7	0.304	
Kr _{tot} /S _{tot}	1.15 ppm	6	1.14 ppm	
¹²⁹ Xe/ ¹³² Xe	0.9615	14	0.9833	
131 Xe/ 132 Xe	0.8846	14	0.7877	
134 Xe/ 132 Xe	0.3462	22	0.3882	
¹³⁶ Xe/ ¹³² Xe	0.3077	22	0.3299	
Xe_{tot}/S_{tot}	0.3 ppm	8	0.087 ppm	Consideration of the large cross section for
1967 7 2027 7	0.000			Xe gives a ratio of ~0.08 ppm
¹⁹⁰ Hg/ ²⁰² Hg	0.020	82	0.005	
¹⁹⁹ Hg/ ²⁰² Hg	0.367	14	0.334	
²⁰⁰ La/ ²⁰² La	0.600	14	0.565	
$\frac{Hg}{2^{01}Hg}$	0.800	14	0.774	
$\frac{100}{100}$	0.407	14	0.441	
Hg _{tat} /S	1.72 ppm	6		Source unknown (gondola)
Ω_2/S_{tot}	0.59 ppm	21	8 ppm	Pronounced fragmentation
H/D (H ₂ /HD)	8800	14	8694	
$^{23}Na^{+}/S_{tot}$	0.99 ppm	11	?	Probably oceanic NaCl
$^{40}Ca^{16}O_2^{+}/S_{tot}$	0.07 ppm	21	?	Contamination or meteorite material

P. Wurz, D. Abplanalp, M. Tulej, M. lakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "In Situ Mass Spectrometric Analysis in Planetary Science," Sol. Sys. Res. (2012) in press.

P-BACE on the MEAP platform

MEAP flight path

b UNIVERSITÄT BERN

- Balloon provided by Esrange Space Center to test beyond line of sight flight
- Semicircular flight following the summer polar vortex
- Launched from Esrange, Sweden on 28 June 2008
- 116 hours flight time
- Altitude 33 ... 38 km
- Landed in Canada, near Umingmaktok, on 3 July 2008.
- Recorded ~ 4500 mass spectra in stratosphere

P-BACE quicklook data, dynamic range

- Raw data
- No background subtracted
- Dynamic range:
 6–7 orders of magnitude per spectrum
- Mass range: 1–1000 amu/q
- D. Abplanalp, P. Wurz, L. Huber, I. Leya, E. Kopp, U. Rohner, M. Wieser, L. Kalla, and S. Barabash, Adv. Space Res. 44 (2009) 870-878.

 $u^{\scriptscriptstyle b}$

⁶ Universität Bern

Operations Timeline (Saturn)

UNIVERSITÄT BERN

				Pressure		Integration		Vertical	ma	iss spec.	total data
Phase	Altitude [km]	Time [min]	Time [sec]	[mbar]	Speed [m/s]	time [sec]	# spectra	resolution [km]	[kb	oit]	science [kbit]
	1500	-6.90	-414.18	1.00E-07							
1	450	0	0	1.00E-04	2535.13	10	41.4	25.35		85.15	3526.8
2	15	2.86	171.6	4.00E+02	2534.97	10	17.2	25.35		85.15	1461.2
3	14	3.05	183		87.72	5	2.3	0.44		81.95	186.8
4	10	3.81	228.6	5.00E+02	87.72	5	9.1	0.44		81.95	747.4
5	-13	8.18	490.8	1.60E+03	87.72	5	52.4	0.44		81.95	4297.5
6	-140	61.4	3684	2.40E+04	39.77	11	290.3	0.44		85.59	24846.2
							412.7				35066.0
								total data	scie	ence [Mbit]	34.24

Fig. 1. Densities measured and pressures derived from the density data. Threshold density was $3 \times 10^{-11} \text{ kg/m}^3$; pressures extend from 1 nanobar to 400 mb. Pressures are compared with Voyager occultation results (squares) (5).

Figure E.1 Galileo entry, descent and deployment sequence shown above will be the basis for the proposed Saturn mission.

The Hera Mass Spectrometer Experiment

^d UNIVERSITÄT BERN

Overall System Lead:

- Lead: Peter Wurz (UBE)
- Project Management: Davide Lasi (UBE)
- Lead Engineer: Daniele Piazza (UBE)

- Mass Spectrometer
 - Lead: Peter Wurz
 - Project Management: Davide Lasi
 - Lead Engineer: Daniele Piazza
 - Lead Electronics: Matthias Lüthi
- Cryotrap System
 - Lead: Hunter Waite (SwRI)
 - Project Management: Paul Wilson (SwRI)
 - Lead Engineer: Chip Beebe (SwRI)
- Reference Gas System
 - Lead: Andrew Morse (OU)
 - Project Management: Ross Burgon (OU)
 - Lead Engineer: Simon Sheridan (OU)
- TLS System
 - Lead:
 - Project Management:
 - Lead Engineer:

Measurement Accuracies

UNIVERSITÄT BERN

b

Ũ

						total data science [Mbit]	34.24	
Phase 1		Accuracy	Phase 2		Accuracy			
H2, low sens	itivity	5.0%	H2, low ser	sitivity	5.0%			
	HD/H2	0.9%		HD/H2	0.9%			
He, low sens	itivity	5.0%	He, low ser	sitivity	5.0%			
	3He/4He	1.7%		3He/4He	1.7%			
He/H2		1.5%	He/H2		1.5%			
CH4, low sen	sitivity	5.0%	CH4, low se	ensitivity	5.0%			
	12C/C13	1.9%		12C/C13	1.9%			
H2S, low sen	sitivity	5.1%	NH3, low se	ensitivity	5.0%			
C2H2, low se	nsitivity	9.0%		14N/15N	12.6%			
C2H6, low se	nsitivity	8.6%	H2S, low se	nsitivity	5.1%			
Ne, low sens	itivity	5.7%	C2H2, low s	sensitivity	9.0%			
Ar, low sensi	tivity	5.0%	C2H6, low s	sensitivity	8.6%			
Kr, low sensit	tivity	12.1%	Ne, low ser	sitivity	5.7%			
Xe, low sensi	tivity	41.8%	Ar, low sen	sitivity	5.0%			
			Kr, low sen	sitivity	12.1%			
			Xe, low sen	sitivity	41.8%			
Phase 3 / 4 /	· 5	Accuracy	Phase 6		Accuracy	Noble gases (3 times cryotrap)	Accuracy
CH4, high ser	nsitivity	5.0%	CH4, high s	ensitivity	5.0%	Ar enriched		
	12C/C13	0.3%		12C/C13	0.2%		36Ar/38Ar	0.10%
NH3, high se	nsitivity	5.0%	NH3, high s	ensitivity	5.0%	Kr enriched		
	14N/15N	1.5%		14N/15N	12.0%		78Kr/Kr_tot	1.06%
H2O at 2 bar	, high sensitivit	6.5%	H2O at 10 k	oar, high sensiti	v 5.0%		80Kr/Kr_tot	1.13%
H2S, high ser	nsitivity	5.0%		160/170	7.4%		82Kr/Kr_tot	0.46%
CO, high sens	sitivity	163.8%		160/180	3.1%		83Kr/Kr_tot	0.28%
CO2, high sei	nsitivity	457.7%	H2S, high s	ensitivity	5.0%		84Kr/Kr_tot	0.23%
PH3 at ~1 ba	r, high sensitivi	5.1%	CO, high se	nsitivity	110.5%		86Kr/Kr_tot	0.21%
AsH3, high se	ensitivity	69.2%	CO2, high s	ensitivity	308.6%	Xe enriched		
GeH4, high s	ensitivity	445.0%	PH3, high s	ensitivity	5.0%		124Xe/Xe_tot	6.18%
C2H2, high se	ensitivity	5.1%	AsH3, high	sensitivity	46.8%		126Xe/Xe_tot	8.74%
C2H6, high se	ensitivity	5.1%	GeH4, high	sensitivity	300.0%		128Xe/Xe_tot	6.28%
Ne, high sens	sitivity	5.0%	C2H2, high	sensitivity	5.0%		129Xe/Xe_tot	1.19%
Ar, high sens	itivity	5.0%	C2H6, high	sensitivity	5.0%		130Xe/Xe_tot	0.85%
Kr, high sens	itivity	5.2%	Ne, high se	nsitivity	5.0%		131Xe/Xe_tot	0.87%
Xe, high sens	itivity	6.1%		20Ne/21Ne	5.4%		132Xe/Xe_tot	0.49%
				21Ne/22Ne	5.4%		134Xe/Xe_tot	0.60%
			Ar, high ser	nsitivity	5.0%		136Xe/Xe_tot	0.74%
			Kr, high ser	nsitivity	5.1%			
			Xe, high ser	nsitivity	5.5%			

IPPW 2019, Oxford

Operations Timeline (old)

Descent Time [min]	Pressure [mbar]	Measurement campaign	Add. activity
–178 to –143	10 ⁻⁶ to 10 ⁻³	Mass spectra, low sens. (incl. H ₂ /He)	Collect hydro carbons
-142	10 ⁻³	Hydro carbons measurements from trap	
–141 to –90	10 ⁻³ to 10 ⁻¹	Mass spectra, low sens. (incl. H ₂ /He)	Collect hydro carbons
-89	10-1	Hydro carbons measurements from trap	
–88 to –55	10 ⁻¹ to 10	Mass spectra, high sens.	Collect hydro carbons
-55	10	Hydro carbons measurements from trap	
–54 to –35	10 to 100	Mass spectra, high sens.	Collect noble gases
-35	100	Noble gas measurements from trap	
–35 to –17	100 to 1000	Mass spectra, high sens.	Collect noble gases
–17	1000	Noble gas measurements from trap	
–17 to –2.5	1000 to 8000	Mass spectra, high sens.	Collect noble gases
-2.5	8000	Noble gas measurements from trap	
–2.5 to 0	8000 to 10'000	Mass spectra, high sens.	
0 to +6	10'000 to 20'000	Mass spectra, high sens,	

Fig. 1. Densities measured and pressures derived from the density data. Threshold density was 3 x 10^{-11} kg/m³; pressures extend from 1 nanobar to 400 mb. Pressures are compared with Voyager occultation results (squares) (5).

Figure 4.17. Observed and modeled abundance profiles in the atmosphere of Saturn.

D UNIVERSITÄT BERN

Measurement Accuracies: Known Species

H ₂	low sensitivity	5%
He	low sensitivity	5%
He/H ₂	low sensitivity	2.1%
CH ₄	low sensitivity	5%
NH ₃	low sensitivity	5%
¹⁴ N/ ¹⁵ N from NH ₃	low sensitivity	5.6%
H ₂ S	low sensitivity	5%
C_2H_2	low sensitivity	6%
C ₂ H ₆	low sensitivity	5.9%
PH ₃	low sensitivity	5.6%
H ₂ O at 2 bar	high sensitivity	5.2%
H ₂ O at 10 bar	high sensitivity	5%
¹⁶ O/ ¹⁷ O in H ₂ O	high sensitivity	2.4%
¹⁶ O/ ¹⁸ Oin H ₂ O	high sensitivity	1%
СО	high sensitivity	52%
CO ₂	high sensitivity	150%
AsH ₃	high sensitivity	22%
GeH ₄	high sensitivity	140%

UNIVERSITÄT BERN

Measurement Accuracies: Noble Gases

³ He/ ⁴ He	Low sensitivity	0.8%	Xe	Low / high sensitivity	19% / 5.1%
Ne	Low / high sensitivity	5.2% / 5%	¹²⁴ Xe/Xe_tot	Cryotrap	6.2%
²⁰ Ne/ ²¹ Ne	High sensitivity	2.5%	¹²⁶ Xe/Xe_tot	Cryotrap	8.8%
²¹ Ne/ ²² Ne	High sensitivity	2.6%	¹²⁸ Xe/Xe_tot	Cryotrap	6.3%
Ar	Low sensitivity	5%	¹²⁹ Xe/Xe_tot	Cryotrap	1.2%
³⁶ Ar/ ³⁸ Ar	Cryotrap	0.11%	¹³⁰ Xe/Xe_tot	Cryotrap	0.86%
Kr	Low / high sensitivity	7% / 5%	¹³¹ Xe/Xe_tot	Cryotrap	0.87%
⁷⁸ Kr/Kr_tot	Cryotrap	1.1%	¹³² Xe/Xe_tot	Cryotrap	0.49%
⁸⁰ Kr/Kr_tot	Cryotrap	1.1%	¹³⁴ Xe/Xe_tot	Cryotrap	0.6%
⁸² Kr/Kr_tot	Cryotrap	0.46%	¹³⁶ Xe/Xe_tot	Cryotrap	0.74%
⁸³ Kr/Kr_tot	Cryotrap	0.28%			
84Kr/Kr_tot	Cryotrap	0.23%			
⁸⁶ Kr/Kr_tot	Cryotrap	0.21%			

Summary

UNIVERSITÄT BERN

Possible Implementation

- Atmospheric composition complex
 - Mass spectrometer
 - Enrichment cells, e.g. Cryo trap
 - Chemical pre-separation
 - > TLS, He/H
- Sufficient sensitivity and vertical resolution
 - Non-scanning instruments → Time of Flight instrument
- Mass resolution and mass range
 - Not critical
 - Several mass analyser options
- Limit complexity
 - Simple Time of Flight instrument
 - Fraps
 - Chemical pre-separation
- Limit instrument resources

- Two mass spectrometers ?
- One MS for survey mode
 - Full mass spectra
 - High cadence during entire descent
 - One MS dedicated for specific objectives
 - Noble gases, with traps
 - High mass resolution
 - Aerosols

 $u^{\scriptscriptstyle b}$

⁶ Universität Bern

Micro-Gas Chromatography Systems

Figure 1: Left: Drawing of complete μ GC analysis system. Right: A 25cm-long separation column with built-in fluidic interconnects.

Figure 9: A 25cm separation column, single-bed preconcentrator, and chemi-resistive detector on a 2^{nd} generation Apple iPod Shuffle about the size of the intended μGC system. The outer circle is about the size of a U.S. quarter.

Figure 3: Cross-sections of the laser-cut fluidic interconnects and the column cross-section. The flow channel is 120µm across and 90µm deep.

K.T.M. Beach, S.M. Reidy, R.J.M. Gordenker, and K.D. Wise, A low-mass high-speed μ GC separation column with built-in fluidic chip-to-chip interconnects, IEEE proc. 2011

 $u^{\scriptscriptstyle b}$

⁶ Universität Bern

Orbitrap

Figure 1. Equipotentials of the quadro-logarithmic field and an example of a stable ion trajectory

$$U(r,z) = \frac{k}{2} \left(z^2 - \frac{r^2}{2} \right) + \frac{k}{2} (R_m)^2 \ln \left[\frac{r}{R_m} \right] + C$$

Figure 2. Modes of mass analysis in the orbitrap: (a) Fourier transform mass spectrometry (image current detection); (b) mass-selective instability (detection using secondary electron multiplier).

Early work

- A. Makarov, Electrostatic axially harmonic orbital trapping: a highperformance technique of mass analysis. Anal. Chem. 72, (2000) 1156–1162
- Qizhi Hu, Robert J. Noll, Hongyan Li, Alexander Makarov, Mark Hardman, and R. Graham Cooks, The Orbitrap: a new mass spectrometer, J. Mass Spectrom. 2005; 40: 430–443
- Theory
 - Andriy Kharchenko, Gleb Vladimirov, Ron M. A. Heeren, Eugene N. Nikolaev, Performance of Orbitrap Mass Analyzer at Various Space Charge and Non-Ideal Field Conditions: Simulation Approach, J. Am. Soc. Mass Spectrom. (2012) 23:977–987
 - Multiple MS (MS^M)
 - Robert Cho, Yingying Huang, Jae C. Schwartz, Yan Chen, Timothy J. Carlson, Ji Ma, MS^M, an Efficient Workflow for Metabolite Identification Using Hybrid Linear Ion Trap Orbitrap Mass Spectrometer, J. Am. Soc. Mass Spectrom. (2012) 23:880–888

Zoom on mass 262

UNIVERSITÄT BERN

070511_Lot1MeOH_b #663-697 RT: 19,32-20,28 AV: 35 NL: 1,02E5 T: FTMS + p ESI Full ms [50,00-500,00]

R. Thissen et al., IPAG 2013

 $u^{\scriptscriptstyle b}$

⁶ Universität Bern