Ice Giant Atmospheric Probe Design Considerations: Galileo-Like, Staged-Probes, and Multi-Probes

2019-07-07

Kunio M. Sayanagi Hampton University

With Thanks to SNAP Co-I's including IPPW Regulars Robert Dillman, Tom Spilker, Dave Atkinson ...

Review: Probe Scientific Objectives

Atmos. Composition - Formation and Evolution

- Noble Gas
- Isotopic Ratios

Thermal Structure and Energy Balance

- Temperature vs. Pressure
- Radiative Flux

Role of Clouds/Haze/Aerosols

- Composition & Light Scattering Properties of Aerosols
- Vertical Distribution of Aerosols and Vapors

Atmospheric Dynamics

- Zonal Circulation
- Meridional Circulation
- Vertical Mixing of Disequilibrium Species

Review: Key Observables

→ Science Objectives: →	Atmospheric Composition	Formation & Evo.	Thermal Structure + Energy Balance	Clouds	Zonal Circ.	Meridional Circ.	Vertical Mixing	Local Turbulence
Noble Gas Abundance	Х	Х						
Isotopic Ratios		Х						
Volatile Molecule Abundance	Х		Х	X		Х	X	
Cloud/Haze/Aerosol Properties				Х		X	Х	
Disequilibrium Species Concentration						Х	X	
Temperature vs. Pressure/Density			Х	X			X	
Radiative Flux			X	Х				
Horizontal Wind Speed					X			
Probe Descent Speed+Accel.							Х	Х

Question #1: How deep do probe(s) need to reach?

Sampling CH4-ice and H2S-ice clouds is possible with 10-bar probes, <100 km below 1-bar. Sampling H2O-ice requires ~50-bar, 200-300 km below 1-bar.

Reaching below all clouds requires descent to 200-500 bar pressure, >500km below 1-bar.

Question #2: Which Latitude(s)? How many probes?

Wind Bands

Example: Cloud bands and circulation on Uranus

Cloud Bands

Which cloud band(s) should we target? Where do we best sample the zonal wind?

How do we best test meridional circulation? What's the effect of Seasonal forcing?

Meridional Circulation (Hypothesized)

N Pole

H₂S cloud

Some quantities are Homogeneous

Observable	Spatial Variation		
Noble Gas Abundance	Spatially Homogonoous		
Isotopic Ratios	Spatially nonlogeneous		
Volatile Molecule Abundance			
Cloud/Haze/Aerosol Properties			
Disequilibrium Species Concentration			
Temperature vs. Pressure/Density	Spatially Variable		
Radiative Flux			
Horizontal Wind Speed			
Probe Descent Speed+Accel.			
Local Turbulence			

Spatially Homogeneous quantities do not need to be measured at multiple locations.

Review: Instruments

Red Letters = Usual Suspects

Observable	Instruments
Noble Gas Abundance	Mass Spec, He Detector, Noble Gas Sensor
Isotopic Ratios	Mass Spec, TLS
Volatile Molecule Abundance	Mass Spec, TLS, Vapor Sensor
Cloud/Haze/Aerosol Properties	Nephelometer
Disequilib. Species Concentration	Ortho-Para Sensor, Vapor Sensor
Temperature vs. Pressure/Density	ASI
Radiative Flux	Net Flux Radiometer
Horizontal Wind Speed	USO/Doppler Wind Experiment
Probe Descent Speed+Accel.	ASI

Probe Mission Architecture Considerations

- Probe must be delivered to target planet by a Carrier Spacecraft
- CRSC has to be in place to receive data from Probe
 → Direct-to-Earth comm is not realistic from Ice Giants
- Is the Probe the Primary Mission?
 - <u>Probe is Primary</u>: Delivery & data relay trajectory can to be optimized only for the Probe.
 - <u>Carrier is Primary</u>:
 - Probe delivery & data relay must be compatible with the carrier mission.
 - Primary Mission Requirement: Orbital Tour, or using IG for Gravity Assist toward KBOs, etc.
- Probe Mission Design Choices/Constraints
 - Entry Latitude(s)
 - Target Depth (limited by comm link duration with CRSC)
 - Instruments

Probe Design Comparison

- Design Considerations:
 - Instruments
 - Usual Suspects: Mass Spec, ASI, USO ...
 - Mass Spec has large impact on probe mass.
 - Entry Latitude & Depth
- Design Comparisons
 - Galileo Probe
 - Huygens
 - 2010 Decadal Uranus Orbiter and Probe
 - 2017 Ice Giant SDT Study
 - SNAP

2010 Decadal Uranus Orbiter and Probe

	Atmos. Entry Mass	Entry Sys.	Descent Module				
Missions	CBE +Conting. +Margin	Aeroshell + Chutes	Instruments	lnst. Mass	Mass Spec Mass	Non-MS Inst. Mass	Battery
Galileo Probe	335 kg	219 kg (65%)	MS, ASI, USO, HAD, Neph, NFR, Lightning, Energetic Particles	35 kg (10 %)	13.2 kg	21.8 kg	7.5 kg (Li-SO ₂ , 2.2%)
Huygens	318 kg	118 kg (37%)	GCMS, ASI, USO, DISR, Surface Sci.	48 kg (15%)	17.2 kg (+6 kg pyrolizer)	24.2 kg	13 kg ? (Li-SO ₂ , 4%)
2010 Uranus Study	127.1 kg	40.8 kg (46%)	MS, ASI, Neph, USO	17.1 kg (13%)	9.2 kg	7.9 kg	11.3 kg (Li-SOCl ₂ , 9%)
2017 IG SDT	320.7 kg	147.0 kg (46%)	GCMS, ASI, Neph, Ortho-Para	32.5 kg (10%)	17.4 kg	15.1 kg	17.1 kg (Li-Ion, 5.3%)
2019 SNAP	30 kg	14.8 kg (49%)	NanoChem, ASI, USO	6.6 kg (22%)	(No Mass Spec)	6.6 kg	0.34 kg (Li-CFx, 1.1 %)

	Atmos. Entry Mass	Entry Sys.	Descent Module				
	CBE	Aerochell		last		Non-MS	
Missions	-						Battery
Galileo Probe	Ν	/lass	Spec D	esi	gn Tra	de	7.5 kg Li-SO ₂ , 2.2%)
Huygens	S	hou	ld be ar	n im	nporta	nt	13 kg ? (Li-SO ₂ , 4%)
2010 Uranus Study		com	nponent	t O†	tutur	e	11.3 kg Li-SOCl ₂ , 9%)
2017 IG SDT			NISSION S	stu(ales.		17.1 kg Li-Ion, 5.3%)
2019 SNAP	30 kg	14.8 kg (49%)	NanoChem, ASI, USO	6.6 kg (22%)	(No Mass Spec)	6.6 kg	0.34 kg (Li-CFx, 1.1 %)

2010 Uranus Orbiter and Probe Entry and Descent

- Probe Delivery before UOI
- Probe release: 29 days before entry
- Comm. Link Duration: 60 minutes
- Target Depth: 5 bar
- Entry Flight Path Angle: -68 deg
- Peak Deceleration: 372g
- Peak Heating: 5511 W/cm²
- Heat Load: 38.1 kJ/cm²

Pilot Chute + Separation/Descent Chute – reaches 5-bar.

2017 IGSDT Probe Entry and Descent

- Probe Delivery before UOI/Flyby
- Probe release: 60 days before entry
- Comm. Link Duration: 60 minutes
- Target Depth: 10 bar
- Entry Flight Path Angle: -30 deg
- Peak Deceleration: 165 g
- Peak Heating: 2498 W/cm²
- Heat Load 41 kJ/cm²

Going Deeper: Two-Stage Saturn Probe Design

- Presented by Sayanagi et al. 2017 at IPPW-2017)
- Re-Design of 2010 Saturn Probe Study
- Incorporated 2010 study's aeroshell, re-packaged a releasable mass-spec + ASI.

- Deep-stage sends data to shallow stage, which relays to CRSC
- Benefits for Uranus/Neptune yet to be studied.
- Reaching 50-bar on Uranus/Neptune would sample Water-ice Cloud Base.

Reaching Deeper requires Staged Probes

Two-Stage Saturn Probe Study (Presented by Sayanagi et al. 2017 at IPPW-2017) Concept to reach Saturn's Water Cloud-base at 20-bar – <u>Comm. Window is 70 min</u>

At Saturn, single-stage probe can reach 20 bar at most in 60 min Releasing a MS-Package allows reaching in 60+ bar in 70 min.

Question #1: How deep do probe(s) need to reach?

Sampling CH4-ice and H2S-ice clouds is possible with 10-bar probes, <100 km below 1-bar. Sampling H2O-ice requires ~50-bar, 200-300 km below 1-bar.

Reaching below all clouds requires descent to 200-500 bar pressure, >500km below 1-bar.

Question #2: Which Latitude(s)? How many probes?

Wind Bands

Example: Cloud bands and circulation on Uranus

Cloud Bands

Which cloud band(s) should we target? Where do we best sample the zonal wind?

How do we best test meridional circulation? What's the effect of Seasonal forcing?

Meridional Circulation (Hypothesized)

N Pole

H₂S cloud

Multi-Probe Planetary Missions:

- Advocated by Decadal Surveys
- Provide data on spatially varying atmospheric phenomena.
- 2003 Survey: Advocated for a Jupiter Multi-Probe mission
- 2013 Survey: Emphasized that a second probe can significantly enhance the scientific value of a probe mission
- Never realized due to perceived high-cost.

Multi-Probe Mission Considerations Science Objectives can be re-organized

Multi-Probe Shared Objectives:

Determine spatial variability in atmospheric properties:

- Vertical distribution of cloud-forming molecules
- Thermal stratification and static stability
- Atmospheric dynamics as a function of depth

Proposal: Probe Summer and Winter Hemispheres

Main Probe-only Objectives:

Determine Bulk Composition:

- Measure abundances of the noble gases (He, Ne, Ar)
- Measure isotopic ratios of H, C, N, and S

Small Next-generation Atmospheric Probe

To Enable Future Multi-Probe Missions

Dillman et al. 2018 IPPW Sayanagi et al. 2019 IG In-Situ Exploration Workshop

Add SNAP as a Second Probe to the 2017 SDT Design

SNAP Science Instruments

Instrument	Measurement	Mass	Power	SNAP Data Return
NanoChem	Vapor Pressure	1.0 kg	1 W	0.6 Mbit
Atmospheric Structure Instrument	Pressure Temperature Acceleration	1.3 kg	5 W	4.5 Mbit
Ultra-Stable Oscillator	Doppler Wind Experiment	1.7 kg	3 W	0.03 Mbit (Housekeeping Only)
Total		4 kg	9 W	5.1 Mbit

SNAP Mass Summary

SNAP Components	CBE Mass +Contingency +30% Margin
Aeroshell	14.8 kg
Backshell	3.1 kg
Forward Heatshield	8.6 kg
Separation Mechanisms	1.2 kg
Separation Parachute + Mortar	1.9 kg
Descent Module	15.2 kg
Structure	2.1 kg
Instruments	6.6 kg
Engineering Subsystems	5.9 kg
Descent Parachute	0.6 kg
Total Mass	30.0 kg

Dual-Probe Delivery Trajectory w/ SNAP

- Deliver PP and SNAP at two significantly different locations
- During each probe's atmospheric descent:
 - Orbiter used as Data Relay
 - Orbiter must be within 30 degree comm. cone around zenith.
 - Each probe must reach at >5-bar while Orbiter is in 30-deg cone.
- Solution:
 - Deliver Primary Probe during Orbit Insertion
 - Deliver SNAP at the end of 1st Orbit.

- Mass Spectrometer design drives the probe mass
 - Gas Chromatograph or Neutral Mass Spec?
 - Consider Non-Mass Spec Options
 - Helium Abundance Detector, Noble Gas Detectors, etc.
 - Alternate Sensors are not sensitive to Isotopic Ratios
- Staged Probes enable exploring deep layers
 - Benefits for Ice Giants need to be studied
- Multi-Probe Missions
 - Secondary Probe(s) do not need to carry a Mass Spec
 - Multi-Probe Delivery Trajectory need more studies
- Trajectory Studies
 - Dual-Probe Delivery during Orbit Insertion?
 - (Dual?) Probe Delivery during GA Flyby?
 - See Tom Spilker's Talk next!

Backup Slides

2010 Uranus Orbiter and Probe Decadal Study

- APL Technical Design Team led by Zibi Turtle
- Total Atmospheric Entry Mass:
 - Current Best Estimate (CBE): 88.87 kg
 - With Contingency: 103.40 kg
 - With Contingency + 30% margin: 127.08 kg
- Instrument CBE + Contingency Mass: 17.13 kg
 - 17% instrument mass fraction
 - Mass Spec + ASI + Nephelometer + USO
 - Mass Spec = INMS CBE+Contingency Mass = 9 kg.
 - Non-MassSpec Inst Mass CBE+Contingency = 8 kg.
- Entry System (Aero/back-shell + TPS + Parachute) CBE Mass: 35.5 kg

2017 Ice Giant Flagship SDT Study

- SDT Chairs: Amy Simon and Mark Hofstadter
- Total Atmospheric Entry Mass:
 - Current Best Estimate (CBE): 224.3 kg
 - With Contingency + Margin: 320.7 kg
- Instrument CBE + Contingency Mass: 32.5 kg
 - 10% instrument mass fraction
 - Mass Spec + ASI + Nephelometer + Ortho/Para : (No USO)
 - Mass Spec = Gas Chromatograph Mass Spec w/ CBE Mass = 17.4 kg
 - Non-MassSpec Inst Mass = 7.9 kg
- Entry System CBE Mass: 102.8 kg

NanoChem: How it works

- Measures Changes in Resistivity in response to vapor concentration
- Sensor Heads can be arrayed up to 16 x16 grid on a single chip
- Under Development at NASA Ames (PI: Jing Li)
 Gas molecules

NanoChem: TRL = 4 Today

Launched and Operated in Space

Environmental Monitoring on ISS

Sensitivity demonstrated for:

... CH_4 , H_2O , and NH_3 , among others ... in Mars and Earth conditions Need to

- ...develop sensitivities for H_2S
 - ... demo in Giant Planet Conditions

Analyte	Sensitivity/Detection Limit
CH ₄	1 ppm in air
Hydrazine	10 ppb tested
NO ₂	4.6 ppb in air
NH ₃	0.5 ppm in air
SO ₂	25 ppm in air
HCI	5 ppm in air
Formaldehyde	10 ppb in air
Acetone	10 ppm in air
Benzene	20 ppm in air
Cl ₂	0.5 ppm in N ₂
HCN	10 ppm in N ₂
Malathion	Open bottle in air
Diazinon	Open bottle in air
Toluene	1 ppm in air
Nitrotoluene	256 ppb in N ₂
H ₂ O ₂	3.7 ppm in air

NanoChem Commercialization

- Development at NASA Ames PI: Jing Li
- ➤A/D on NanoChem Attachment
- ➢ Power from Phone (~mW)
- ➢ Processing on the Phone
- ≻ High sensitivity ppb to ppm
- Data Transmission through Cellular Network

