

Ice Giants Motivations and Science Objectives for in situ exploration

Thibault Cavalié Laboratoire d'Astrophysique de Bordeaux CNRS, Univ. Bordeaux LESIA, Obs. Paris

Some outstanding questions regarding Ice Giants

- How did the Ice Giants form?
- What constraints can be placed on the mechanisms for planetary accretion?
- What is the role of giant impacts in explaining the differences between Uranus and Neptune?
- What is the bulk composition and internal structure of Uranus and Neptune?
- What physical and chemical processes during the planetary formation and evolution shape the magnetic field, thermal profile, and other observable quantities?

Broader exoplanet context

- $\bigcirc \sim 4000$ exoplanets detected
- Great variety
 - Hot Jupiters
 - Output Hot Neptunes
 - Super Earths
 - More common giants

Semi-Major Axis (AU)

How do these systems form? And how do they evolve?

Giant planet formation

Giant planet formation

- Core accretion model (Pollack et al. 1996)
 ~1 to few Myr
- Disk instability model (Boss 1997, 2002)
 ~1 Myr

Composition provides constraints on the conditions in the solar nebula, the planetary formation location and formation timescale

Deep composition

Understanding the fomation of GP requires measuring their deep composition

How can we measure deep composition?
 Remote sensing (+ models)
 In situ

ALMA

Juno/MWR

Objectives

Deep composition

Has Galileo failed at measuring O/H?

 \Rightarrow Goal for Juno

Galileo Probes Jupiter's Atmosphere

Deep composition

- Galileo failed at measuring O/H
 - \Longrightarrow Goal for Juno
- Why is O so important? The oxygen abundance constrains the condensation processes of planetesimal ices
- Amorphous ices (Owen et al. 1999)
 - Heavy elements, including
 O, should be uniformly enriched

- Cristalline ices (clathrate) (Gautier et al. 2000, 2005)
 - Heavy elements trapped as a function of clathration temperature
 - High O abundance required

Key Science objectives for an Ice Giant probe

Tier 1 goals: *deep composition*

- \bigcirc What is the abundance of He relative to H₂?
- What is the abundance of noble gases?
- What are the abundance profiles of key cosmogenic species?

Tier 2 goals: deep composition and atmospheric structure

- What are the most important reservoirs for main isotopes of H, He, N, C, O, Ne and heavy noble gases?
- What is the vertical structure of atmospheric temperature?

Deep composition and interior models

- Helium is the one of the main keys to better understand giant planet interiors
 - Fundamental to compute the equation-of-state
 - Internal structure
 - Luminosity, cooling history
 - Mass/radius relationship

Go talk to Ravit Helled and Tristan Guillot They are the experts \bigcirc

Motivations

Objectives

Deep composition and formation models

N/S abundances: The question of depth

- Absorber in the cm-range
 - NH₃ or H₂S?
 - NH_4SH cloud at 30-40 bar
 - "depleted" NH₃ or H₂S above (and until condensation)
 - Recent detection of H_2S in Uranus => S/N > 4.4-5 •
- To measure independently N and S, one needs to go below the NH₄SH cloud...
- Image: second second
- Deeper probe?
 - Longer descent => radio-fink duration?
 - Deeper descent = / data rate? Fit without H out = / data rate? — Fit with H₂S
 - Faster descent => less vertical sampling; Irwin et al. (2018) is it feasible⁵⁶?

 1.57
 1.58
 1.59
 1.60

Isotopic ratios

- Isotopic ratio constrain main reservoir of heavy elements
 D/H
 - Measured in the stratosphere (Feuchtrgruber et al. 2013)
 - \bigcirc Mix between protosolar H₂ and cometary H₂O ices
 - A deep measurement would help unveil any fractionation with depth
- 14N/15N
 - Jupiter and Saturn value consistent with solar value $\implies N_2$ main reservoir of NH_3
 - Uranus and Neptune probably more icy/rocky (cometary origin)
 - \implies cometary value seen in NH₃ and HCN expected

Temperature/pressure profile

- Ground-truth for remote sensing observations
 - Look at the citation count of Seiff et al. (1998) (jovian temperature profile from Galileo)

- Ortho-para H₂ effect on temperature gradient around the tropopause in Ice Giants
- Dry/wet adiabat vs. Inhibited convection (Guillot et al. 1995, Leconte et al. 2017, Cavalié et al. 2017)

Conclusion

Motivations

- Giant planet formation & evolution
- Broader exoplanet context

Science objectives

- Measurement priority 1:
 - He abundance
 - Noble gas abundances
 - Key cosmogenic species (C, N, S)
- Measurement priority 2:
 - Isotopic ratios
 - Temperature and pressure profile

Formation and evolution

Formation and evolution State of the atmosphere

Thank you for your attention !